A formal framework for the

 design of software components with the B methodDavid Déharbe - UFRN, Natal, Brazil
j.w.w. Stephan Merz - LORIA \& U. Lorraine, Nancy, France

Aspiration

- Software engineering
- Design for quality

> components for safety-critical systems

- Traceability

MDD

- Improve productivity

Approach

- Components for safety-critical systems
* Formal methods
- MDD
* Formal specification
* Successive refinements
- Improve productivity
* Refactoring rules

> Márcio Cornélio, Ana Cavalcanti, Augusto Sampaio:
> Sound refactorings. Sci. Comput. Program. 75(3): 106-133 (2010)

* Refinement rules

Goal

- Formal methods + MDD :
* the B method
- Improve productivity:
* refinement rules, refactoring rules
- Machine-controlled formalisation of the semantics
- Formal model of component behaviour

Other applications

- Verify
* code generators
* abstraction techniques

Overview

- Ingredients
* B method
* Isabelle/HOL
- Formal framework
* Labeled transition systems as models for components
* Simulation as model for refinement
* B method

Overview

- Ingredients
* B method
* Isabelle/HOL
- Formal framework
* Labeled transition systems as models for components
* Simulation as model for refinement
* B method

B method

a method for specifying, designing and coding software components

Assigning programs to meanings

- Specify
* Mathematical language: FOL, set theory, integer arithmetics, substitutions
- Verify
* Weakest-precondition calculus
- Assign programs
* Refinement calculus
* Imperative programming

Tool support

- IDE
* Atelier-B (free, partly open-source)
* B-Toolkit (free, open-source)
- animation: BRAMA, ProB
- model checking (ProB)
- code generation (b2llvm)
- etc.

(1) ATELIER B

METROS AND TRAINS EQUIPPED WITH B SIL4 SOFTWARE

B by example

- Distributed termination detection

Processors: 0, 1, 2 e 3

0 send messages to 1, 2 e 3

1, 2 e 3 compute

3 sends data to 1

computation proceeds

2 terminates, becomes idle

1 becomes idle, 0 sends data to 2

upon receiving a message, 2 becomes active again

3 becomes idle

2 sends a message to 0

0 becomes idle

2 becomes idle

How can 0 can detect that 12 and 3 are idle to report end of

 computation?

Solution EWD 840

- Edsger W. Dijkstra, W.H.J. Feijen, A.J.M. van Gasteren
- Derivation of a termination detection algorithm for distributed computations

B model

MACHINE EWD840
 CONSTANTS NUM
 PROPERTIES NUM \in NAT1
 DEFINITIONS PROC $==0$.. (NUM-1)

- NUM processors [\#0, \#1, \#2, ... \#(NUM-1)]

B model

- State of processors
- active
- idle

B model

- Detect termination

VARIABLES terminated INVARIANT
terminated \in BOOL INITIALISATION
terminated := FALSE

B model

INVARIANT
 terminated $=$ TRUE \Rightarrow idle $=$ PROC

- Functional requirement
* termination occurs when all processors are idle

Approach

- A token circulates among processors
- When processor terminates, forward token to successor
- Hypothesis:

VARIABLES token
INVARIANT token \in PROC
INITIALISATION token $:=0$
^ Instantaneous communication
\star \# $0 \rightarrow \#(\mathrm{~N}-1) \ldots$ \#2 $\rightarrow \# 1 \rightarrow \# 0$

Approach

INVARIANT token +1 ..num \subseteq idle

* All processors above token position are idle.

Solutions

- but... what if a message reac. sender does not have the left? token?

SETS

- Token already color $=\{$ BLACK, WHITE $\}$
token_color
* The sender INVARIANT
token_color \in COLOR \wedge
(token+1..num \subseteq idle \vee token_color = BLACK)
* It must be ilinitialisation
color_token := WHITE
* "tag" the token to indicate that one more run is required

Solutions

- but... what if the sender does not have the token?

```
VARIABLES
tainted
INVARIANT
tainted \(\subseteq\) PROC \(\wedge\)
(token+1..num \(\subseteq\) idle \(\vee\)
tainted \(\cap\) O..token \(\neq \varnothing \vee\)
```

- The sender is in 0..token
* When a processor sends á token_color = BLACK) ner processor with higher inde NITIALISATION
tainted := \varnothing
* When a flag is set on the processor with the token, it tags the token.

Partial synthesis

```
MACHINE EWD840
CONSTANTS NUM
PROPERTIES NUM \in NAT1
SETS
    COLOR = { BLACK, WHITE }
DEFINITIONS PROC == 0 .. (NUM-1)
VARIABLES
    idle, terminated, token, tainted, token_color
INVARIANT
    idle \subseteqPROC ^ terminated \in BOOL ^ token \in PROC ^
    tainted \subseteq PROC ^ token_color \in COLOR ^
(token+1..num \subseteqidle \vee
    tainted \cap 0..token \not= \varnothing V
    token_color = BLACK)
INITIALISATION
    idle :\in \mathscr{P(PROC) | terminated := FALSE || token := 0 ||}
color_token := WHITE || tainted := \varnothing
```


Behaviour

- An active processor might become idle anytime

```
Finish(pr) =
PRE pr \inPROC ^ pr & idle THEN
    idle := idle u {pr}
END;
```


Behaviour

```
    Send_Message(pri,prj) =
    PRE pri \inPROC ^ prj \in PROC ^ pri & idle THEN
    IF prj \in idle THEN
- A idle := idle - {prj}
    END |
    a IF prj > pri THEN
        tainted := tainted u {pri}
        END
    END
```


Behaviour

- When a processor becomes idle and it has the token, the token goes to the next processor.
* Processor 0 has a special behaviour (resets the token, etc.)

```
Pass_Token = PRE token }=0\wedge token \in idle THEN
    token := token - 1 ||
    IF token \in tainted THEN
        color_token := BLACK
    END |
    tainted := tainted - { token }
```


END

Behaviour

- Processor 0:
* resets the token
* forwards the token to the processor with higher index

```
Initiate_Probe = PRE token = 0^ color_token = BLACK THEN
    tainted := tainted - {0} ||
    color_token := WHITE ||
    token := NUM - 1
```

END

Behaviour

Terminated $=$ PRE token $=0 \wedge$ color_token $=$ WHITE $\wedge 0 \notin$ tainted $\wedge 0 \in$ idle THEN
terminated := TRUE

END

* token has returned to 0
* token is not tagged
* 0 is not flagged
* 0 is idle

- Each c ray be designed individually

B-method: synthesis

- Specification:
* non-deterministic state-machines
* state = valuation of state variables
* transition = operation execution
- Design:
- refinement relation

Overview

- Ingredients
* B method
* Isabelle/HOL
- Formal framework
* Labeled transition systems as models for components
* Simulation as model for refinement
* B method

Formalisation

- Interactive theorem prover
^ ACL2, Coq, Isabelle, LCF, Maude, PVS, etc.
* programming language: define inductive data types, recursive functions
* logic: specify properties of interest
* proof engine: verify properties
* code generation: execute defined functions

Isabelle/HOL

- functional programming language
- typed, higher order logic
- proof:

夫 interactive

* automatic: tableaux, rewriting systems, decision procedures
- code generation: SML, OCaml, Scala

Tool support

Formalisation

- LTS
- Simulation
- B method
* without pre-condition
* with pre-condition

Formalisation principles

- A B component is a labeled transition system
\star valuation of the variables \Longleftrightarrow state
* initial states, reachable states
- Transitions occur when an operation is applied
* operation \Longleftrightarrow event
* state + event * \Longleftrightarrow partial
* state + event \rightarrow states \Longleftrightarrow non deterministic

```
record ('st, 'ev) Tr =
    src :: 'st -- "source state"
    dst :: 'st -- "destination state"
    lbl :: 'ev -- "labeling event"
```

field name
field type
record ('st, 'ev) LTS =
init : : "'st set" -- "set of initial states" trans :: "('st, 'ev) Tr set" -- "set of transitions"

Labeled transition systems

definition successors : :
"('st, 'ev) LTS \Rightarrow 'st set \Rightarrow 'st set"
where
"successors l S =

$$
\{d s t t \mid t \cdot t \in \operatorname{trans} l \wedge \operatorname{src} t \in S\}^{\prime \prime}
$$

inductive_sf,c states : : "('c', 'ev) LTS \Rightarrow 'st set"
for l :: "('st, 'ev) LTS"
where
base[elim!]: "s \in init $l \Longrightarrow s \in$ states l"
| step[elim!]:
" $\mathbb{t} \in$ trans l; src $t \in$ states \mathbb{l}
\Longrightarrow dst $\mathrm{t} \in$ states ${ }^{\prime \prime}$
introduction rule
inductive_cases base : "s e states l" inductive_cases step : "dst t \in states l"

proof construction ors l (states l) \subseteq states l "
unfolding successors_def
to prove a proposition \mathbf{P} is true in all states of LTS I:

1. prove \mathbf{P} is true in init \mathbf{I}
2. prove \mathbf{P} is preserved by trans \mathbf{I}
lemma reachable_induct_predicate $=$ states.induct using assms
by (induct s) (auto simp: successors_def)

Internal behaviour
inductive_set runs :: "('st, 'ev) LTS \Rightarrow ('st, 'ev) Run set"
for l :: "('st, 'ev) LTS"
whono
type_synonym ('st, 'ev) Run = "('st, 'ev) Tr list"

| step: " $\mathbb{I} \in$ trans $l ;$ ts \in runs $l ;$ ts $\neq[]$; src $t=$ dst (last ts) $\mathbb{1}$

$$
\Longrightarrow \text { ts @ }[\mathrm{t}] \in \text { runs l" }
$$

inductive_cases one_step_run : "[t] \in runs l"
inductive_cases multi_step_run : "ts @ [t] e runs l"

Properties of internal behaviour

lemma "ts \in runs $l \Longrightarrow$ ts $\neq[] \Longrightarrow$ src (hd ts) \in init l" by (induct rule: runs.induct, auto)

External behaviour

type_synonym 'ev Trace = "'ev list"

```
definition traces :: "('st, 'ev) LTS = 'ev Trace set"
where
    "traces l = (map lbl) ` (runs l)
```

maps function IbI to each element operator` is relational image of list and returns list of results map Ibl : converts run to trace

Formalisation

- LTS
- Simulation
- B method
* without pre-condition
* with pre-condition

Simulation between

transitions

definition sim_transition :: "'st rel \Rightarrow ('st, 'ev) Tr rel" where
"sim_transition r =
$\left\{\left(t, t^{\prime}\right) \mid t t^{\prime} .\left(\operatorname{src} t, \operatorname{src} t^{\prime}\right) \in r\right.$
$\wedge \mathrm{lbl} \mathrm{t}=\mathrm{lbl} \mathrm{t}^{\prime} \wedge\left(\right.$ dst $\left.\left.\mathrm{t}, \mathrm{dst} \mathrm{t}^{\prime}\right) \in \mathrm{r}\right\}^{\prime \prime}$

Simulation between LTSes

definition simulation : : "'st rel \Rightarrow ('st, 'ev) LTS rel" where
"simulation $r \equiv$ \{ (l, l') | ll'.
($\forall \mathrm{s} \in \mathrm{in}$
\wedge ($\mathrm{vs} \mathrm{s}^{\prime}$.
Left-associative, infix operator \leqslant, with precedence 50 , is syntactic sugar for simulated
($\forall \mathrm{t} \in$
($\exists t^{\prime} \in$ trans $l^{\prime} . s r_{1} \quad:^{\prime}=s^{\prime} \wedge$
($\mathrm{t}: \quad$ ') \in sim_transition r))) \}"
definition simulated (infixl "§" 50) where " $\left(l \leqslant l^{\prime}\right) \equiv \exists r$. (l, $\left.l^{\prime}\right) \in$ simulation $r^{\prime \prime}$

Properties of simulation

- The identity relation on LTS is a simulation.
- The relational composition of two simulations is a simulation.
- The simulated relation is reflexive and transitive.

Simulation and behavior

definition sim_run : :
"'st rel \Rightarrow ('st, 'ev) Run rel"
where
"sim_run r = \{(ts, ts') | ts ts'.
list_all2 ($\lambda t t^{\prime} .\left(t, t^{\prime}\right) \in$ sim_transition $\left.r\right)$ ts ts'\}"

Simulation and runs

- To two similar runs correspond the same trace (sequence of events).
- Similar runs have equal length.
- other properties have been shown

Simulation on LTSes and behaviour

theorem sim_run:
assumes " $\left(\mathrm{l}, \mathrm{l}^{\prime}\right) \in$ simulation r " and "ts \in runs l " obtains ts' where

$$
\text { "ts' } \in \text { runs l'" " } \text { ts,ts') } \in \text { sim_run r" }
$$

lemma sim_traces: assumes " $\left(\mathrm{l}, \mathrm{l}^{\prime}\right)$ e simulation r " and " $\mathrm{t} \in$ traces l " shows "t \in traces l’"
theorem sim_trace_inclusion:
" $\left(\mathrm{l}, \mathrm{l}\right.$ ') \in simulation $r \Longrightarrow$ traces $l \subseteq$ traces l^{\prime} "
corollary simulates_traces: "l \leqslant l' \Longrightarrow traces $l \subseteq$ traces l'"

Formalisation

- LTS
- Simulation
- Bmethod
* without pre-condition
* with pre-condition

B machine

```
record ('st, 'ev) B_machine =
    lts :: "('st, 'ev) LTS"
    invariant :: "'st => bool"
```

definition sound_B_machine ::
"('st, 'ev) B_machine \Rightarrow bool"
where
"sound_B_machine $m \equiv \forall s \in$ states (lts m). invariant m s"

Correctness of B machines

theorem machine_po: assumes "^s. s \in init (lts m) \Longrightarrow invariant m s"
and " $\wedge \mathrm{t}$. $\llbracket \mathrm{t} \in$ trans (lts m); invariant m (src t)】 \Longrightarrow invariant m (dst t)"
shows "sound_B_machine m"
unfolding sound_B_machine_def
using assms
by (auto elim: states.induct)

B refinement

record ('st, 'ev) B_refinement = abstract :: "('st, 'ev) LTS" -- "the abstract component" concrete :: "('st, 'ev) LTS" -- "the concrete component " invariant : : "'st \times 'st \Rightarrow bool" -- "gluing invariant"
definition sound_B_refinement : :
"('st, 'ev) B_refinement \Rightarrow bool"
where
"sound_B_refinement r =
(concrete r, abstract r) \in simulation (Collect (invariant r))"

Properties of B refinement

lemma refinement_sim:
"[sound_B_refinement $r] \Longrightarrow$ concrete $r \leqslant a b s t r a c t ~ r " ~$
lemma refinement_compose_soundness:
"[sound_B_refinement r ; sound_B_refinement r^{\prime}; concrete r = abstract $r^{\prime} 1$
\Longrightarrow sound_B_refinement (refinement_compose r r')"
lemma refinement_compose_associative:
"refinement_compose (refinement_compose r r') r''= refinement_compose r (refinement_compose $r^{\prime} r^{\prime}$)"
etc.

B development

type_synonym ('st, 'ev) B_design = "('st, 'ev) B_refinement list"

```
record ('st, 'ev) B_development =
    spec :: "('st, 'ev) B_machine"
    design :: "('st, 'ev) B_design"
```


B development

definition sound_B_design where
"sound_B_design refs $\equiv \forall i<s i z e ~ r e f s . ~$ sound_B_refinement (refs!i)
\wedge (Suc i < size refs \longrightarrow concrete (refs!i) = abstract (refs!(Suc i)))"
definition sound_B_development where
"sound_B_development dev ミ sound_B_machine (spec dev) ^ sound_B_design (design dev) ^ (design dev $\neq[] \longrightarrow$
(lts (spec dev)) = (abstract (hd (design dev))))"

B development

lemma design＿sim：
［＂sound＿B＿design refs＂；＂refs $\neq[]$＂】 \Longrightarrow＂concrete（last refs）＜abstract（hd refs）＂
theorem development＿sim：
【＂sound＿B＿development d＂；＂design d $\neq[]$＂】
\Longrightarrow＂concrete（last（design d））＜lts（spec d）＂

Formalisation

- LTS
- Simulation
- Bmethod
* without pre-condition
* with pre-condition

Preconditions

- In B, operations may have a precondition.
- precondition \Longleftrightarrow operation terminates in a safe state.
- \neg precondition \Longleftrightarrow no guarantee, even of termination.
\star transition \Longleftrightarrow valid application of operation
* notion of accepted events, outgoing transitions
- Operations in refinement may have weaker preconditions than in abstract counterpart.
* new notions of simulation and refinement

Accepted events

definition
 Given

outgoing_trı • a LTS I and
where
'ev) Tr set"
"outgoing_t outgoing_trans Is : set of transitions leaving sct=s\}"

definition Given

accepted_el • a LTS I and

- a state s,
where
accepted_events I s: set of events for transitions leaving s
"accepted_events L S = LbL (outgoing_trans L s)"

Simulation and preconditions

definition simulation_B :: "'st rel \Rightarrow ('st, 'ev) LTS rel" wher:
" s • lifting the notion of simulation between states to simulation between LTS...

- restricted to events accepted by simulating LTS.

accepted_events l s 〕 accepted_events l' s' ^ ($\forall \mathrm{t} \in$ outgoing_trans l s.
lbl $t \in$ accepted_events l' $s^{\prime} \longrightarrow$
(\exists t' \in outgoing_trans l' s^{\prime}. src t' = s' $\wedge ~ l b l ~ t '=l b l t \wedge$ (dst t, dst t') \in r))) \}"

definition simulated_B (infixl " \leqslant B" 50)

where "l \leqslant B l' $\equiv \exists r$. (l, l') \in simulation_B r "

Properties of simulation

lemma simulation_B_composition:

assumes " $(\mathrm{l}, \mathrm{l}$ ') \in simulation_B r "
and "(l', l'') e simulation_B r'"
shows " $\left(\mathrm{l}, \mathrm{l}^{\prime \prime}\right) \in$ simulation_B (r 0 r')"
lemma simulates_B_transitive:

```
assumes "l <B l'" and "l' <B l''"
shows "l <B l''"
```


Accepted events after a run

```
definition run_accepted_events ::
    "('st, 'ev) LTS = ('st, 'ev) Run = 'ev set"
where
"run_accepted_events l r =
    if r = [] then UNION (init l) (accepted_events l)
    else accepted_events l (dst (last r))"
```


D Tr trace of observed
 events

accepted events
type_synonym "ev TrB = "'ev list * "ev set"
definition run_trace : :
"('st, 'ev) LTS \Rightarrow ('st, 'ev) Run \Rightarrow 'ev TrB"
where
"run_trace l r ミ(map lbl r, run_accepted_events l r)"
definition traces_B : :
"('st, 'ev) LTS \Rightarrow 'ev TrB set"
where
"traces_B l \equiv (run_trace l$)$ ' (runs l)"

Simulation and traces for B

```
lemma sim_traces_B:
        assumes "l <B l'"
            and "(tr, acc) e traces_B l"
        shows "ョ (tr', acc') \in traces_B l'.
        acc \supseteq acc' ^
        (tr = tr' v
            prefix tr' tr ^ (\exists d \in acc'.d }\not\inacc ^
                prefixeq (tr' @ [d]) tr))"
```


B development

- Only change: substituted \leqslant by $\leqslant \mathbf{B}$
- All results apply

Conclusion

- Semantic model for the behavioural aspects of component in the B method.
- Formalised in Isabelle/HOL.
- Two versions

Outlook

- Investigate other modelling approaches
* include attribute "alphabet" of events in LTS
- Formalise derivation of semantic structure from syntactic structure
- Formalise refactoring and refinement rules

Thanks for your attention!

Questions?

