A formal framework for the
design of software

components with the B methoa

David Déharbe - UFRN, Natal, Brazll
j.w.w. Stephan Merz - LORIA & U. Lorraine, Nancy, France

http://DavidDeharbe.github.io

Aspiration

e Software engineering

+ Traceabilty e
+ Improve productivity PAUGHEESBHEGESRESR]

Approacn

 Components for safety-critical systems
» Formal methods

« MDD
» Formal specification
* Successive refinements

e Improve productivity

, Augusto Sampaio:

* Refactgring rules | | Sbund refactor’ings. | . 75(3): 106-133 (2010)

» Refinement rules Sk , Augusto Sampaio, M :

A Refinement Algebra for Object-Oriented Programming. ECOOP . : 457-482

Goal

Formal methods + MDD

» the B method

Improve productivity:

» refinement rules, refactoring rules
Machine-controlled formalisation of the semantics

Formal model of component behaviour

Other applications

e \erify
» code generators

* abstraction techniques

Overview

e |Ingredients
» B method
* |sabelle/HOL
e Formal framework
= Labeled transition systems as models for components
» Simulation as model for refinement

» B method

Overview

e [ngredients
» B method
* |sabelle/HOL
e Formal framework
= Labeled transition systems as models for components
» Simulation as model for refinement

» B method

J-R Abrial

B method

a method for specifying,
designing and coding
software components

sBulueaw o0} swesboid Bulubissy

)008-g 9yl

Assigning programs to
meanings

e Specity

» Mathematical language: FOL, set theory, integer arithmetics,
substitutions

* Verity

» Weakest-precondition calculus
* Assign programs

» Refinement calculus

» |mperative programming

lool support

IDE
= Atelier-B (free, partly open-source)
» B-Toolkit (free, open-source)
animation: BRAMA, ProB
model checking (ProB)
code generation (b2llvm)

elc.

ATELIER B

PED WITH B SIL4 SOFTWARE

FORMAL METHOD

LOPMENT OF SAFETY CRITICAL SIL4 SOFTWARE
[OWNLOAD OF ATELIER B 4.0
EE PROVEN

=
D
-
O
>
O

B method

lspecify
Machine > analyse
V.
l design ‘
Refinement 1 « analyse

(design ; analyse)*

\4

Implementation

l code generation

B by example

e Distributed termination detection

Processors: 0,1, 2e 3

O send messagesto 1,2 e 3

1, 2 € 3 compute

3 sends data to

computation proceeds

2 terminates, becomes idle

1 becomes idle, O sends data to 2

upon receiving a message, 2 becomes active again

3 becomes idle

2 sends a message to 0

0 becomes idle

2 becomes idle

How can O can detect that 1 2 and 3 are idle to report end of
computation?

Solution EWD 840

—dsger W. Dijkstra, W.H.J. Feijen, A.J.M. van
(Gasteren

Derivation of a termination detection algorithm
for distributed computations

B moaqel

« NUM processors | #0, #1, #2, ... # NUM-1)]

B moaqel

e State of processors

e active

e |dle

VARIABLES idle

INVARIANT

idle ¢ PROC

INITIALISATION
idle :e P(PROC)

B moaqel

e Detect termination -

B moaqel

INVARIANT
terminated = TRUE = idle = PROC

e Functional requirement

» termination occurs when all processors are
idle

Approach

e A token circulates among processors

 When processor terminates, forward token to

SUCCESSOr VARIABLES token
INVARIANT token € PROC
+ Hypothesis: INITIALISATION token := 0

» |[nstantaneous communication

Approach

INVARIANT token+1..num ¢ idle
but... what if a

message reaches P after
token has left?”

e Desired property

» All processors above token position are idle.

Solutions

* put... what it a message rea
left?

e Joken alread
*» [he sender

*» |t must be |

» "tag” the token to indicate that one more run is
required

Solutions

e put... what if the sender does not have the

) . VARIABLES
.oken ' tainted
INVARIANT
e The sender is in 0..token tainted ¢ PROC A

(token+1..num ¢ idle v
tainted n O0..token # @ Vv

» \When a processor sends ¢ token_color = BLACK) Ner

. . - INITIALISATION
processor with higher iInde minted = o

» When a flag is set on the processor with the
token, It tags the token.

Partial synthesis

Behaviour

* An active processor might become idle anytime

Behaviour

{0

Behaviour

nen a processor becomes idle and it has the

Ken, the token goes to the next processor.

Processor 0 has a special behaviour (resets
the token, etc.)

Behaviour

e Processor O:

* resets the token

» forwards the token to the processor with
nigher index

Behaviour

» token has returned to O
» token Is not tagged
» 0 Is not flagged

» 0 Is idle

CES

lock (small instances

designed individually

B-method: synthesis

e Specification:
» non-deterministic state-machines
» state = valuation of state variables
» fransition = operation execution

e Design:

e refinement relation

Overview

e [ngredients
» B method
= |sabelle/HOL
e Formal framework
= Labeled transition systems as models for components
» Simulation as model for refinement

» B method

Formalisation

* [nteractive theorem prover
» ACL2, Coq, Isabelle, LCF, Maude, PVS, etc.

* programming language: define inductive data
types, recursive functions

» |logic: specify properties of interest
* Proof engine: verity properties

*» code generation: execute defined functions

|lsabelle/HOL

* functional programming language
e typed, higher order logic
* Droof:

* |nteractive

» automatic: tableaux, rewriting systems, decision
procedures

* code generation: SML, OCaml, Scala

lool support

Seq.thy (SISABELLE HOME/src/HOL/ex/) . 7 isabelle

section <Finite sequences> Filter

4

Seq.thy
theo ry Seq section <Finate sequences

imports Main theory Seq
datatype ‘a seq = Empty | Seq "2 "

begin

UONRIUAWNIOQ

fun reverse “'a seq "a seq”

datatype ‘a seq = Empty | Seq 'a "'a seq" lema conc_espty: “conc xs Eapty = as”

Lema conc_assec. "conc (cont 13 ys) 23 = con

lema reverse_conc: “reverse lconc s ys) = ¢

fun conc :: "'a seq = 'a seq = 'a seq"} Lms reveres roreree: “reverse {reverss oa
where)

"conc Empty ys = ys"
| "conc (Egglx Xs) ys = Seq x (conc xs ys)"

AIPPIS

S0 L

fun revers|{ constant "Seq.seq.Seq"
where - i = seq = 1 Seq

"reverselacmp~y N
| "reverse (Seq x xs) = conc (reverse xs) (Seq x Empty)"

Lemma conc_empty: “conc xs Empty = xs"
by (induct xs) simp_all

v Auto update Update Search
constants
conc :: "'a seq = 'a seq = 'a seq"
Found termination order: "(Ap. size (fst p)) <*mlex*> {}"

B8 w | QOutput ' Query Sledgehammer Symbols

13,39 (200/789) (isabelle,isabelle, UTF-8-1sabelle) UG IISS/410MB 11:45 PM

Formalisation

e LTS

e Simulation
B method
* Without pre-condition

» With pre-condition

Formalisation principles

* A B component is a labeled transition system

» valuation of the variables < state

= |nitial states, reachable states

* [ransitions occur when an operation is applied

* operation < event
» state + event » <« partial

x state + event = states < non deterministic

| abeled transition systems

es of case-split rules for inductive proofs:

INnternal behaviour

Properties of internal
behaviour

External behaviour

Formalisation

e LTS

e Simulation
B method
* Without pre-condition

» With pre-condition

Simulation between

trangitions

le]

Simulation between LTSes

Properties of simulation

* The identity relation on LTS is a simulation.

* The relational composition of two simulations is a
simulation.

e [The simulated relation is reflexive and transitive.

Simulation and behavior

Simulation and runs

e [otwo similar runs correspond the same trace
(sequence of events).

» Similar runs have equal length.

e other properties have been shown

Simulation on LTSes and
behaviour

Formalisation

LTS

Simulation
Bmethod
» Without pre-condition

» With pre-condition

B machine

Correctness of B machines

B refinement

Properties of B refinement

B development

B development

B development

Formalisation

LTS

Simulation
Bmethod
* Without pre-condition

» With pre-condition

Preconditions

In B, operations may have a precondition.

precondition <= operation terminates in a safe state.
- precondition <= no guarantee, even of termination.

» transition < valid application of operation

* notion of accepted events, outgoing transitions

Operations in refinement may have weaker preconditions than in
abstract counterpart.

* new notions of simulation and refinement

Accepted events

Simulation and
poreconditions

Properties of simulation

Accepted events after a run

Simulation and traces for B

B development

 Only change: substituted < by <B

» All results apply

Conclusion

 Semantic model for the behavioural aspects of
component in the B method.

e Formalised in Isabelle/HOL.

e WO versions

Outlook

* [nvestigate other modelling approaches
= include attribute “alphabet” of events in LTS

e Formalise derivation of semantic structure from
syntactic structure

 Formalise refactoring and refinement rules

Thanks for your attention!

Questions?

