A *formal* framework for the design of *software components* with the B method

David Déharbe - UFRN, Natal, Brazil j.w.w. Stephan Merz - LORIA & U. Lorraine, Nancy, France

Aspiration

- Software engineering
 - Design for quality
 - Traceability
 - Improve productivity

components for safety-critical systems

MDD

Automate some design tasks

Approach

- Components for safety-critical systems
 - ⋆ Formal methods
- MDD
 - ⋆ Formal specification
 - ⋆ Successive refinements
- Improve productivity
 - ★ Refactoring rules
 - ★ Refinement rules

E & ♥ Márcio Cornélio, Ana Cavalcanti, Augusto Sampaio: Sound refactorings. Sci. Comput. Program. 75(3): 106-133 (2010)

Paulo Borba, Augusto Sampaio, Márcio Cornélio: A Refinement Algebra for Object-Oriented Programming. ECOOP 2003: 457-482

Goal

- Formal methods + MDD :
 - ★ the B method
- Improve productivity:
 - ★ refinement rules, refactoring rules
- Machine-controlled formalisation of the semantics
- Formal model of component behaviour

Other applications

- Verify
 - ★ code generators
 - ★ abstraction techniques

Overview

- Ingredients
 - ★ B method
 - ★ Isabelle/HOL
- Formal framework
 - ★ Labeled transition systems as models for components
 - ★ Simulation as model for refinement
 - ★ B method

Overview

- Ingredients
 - ★ B method
 - ★ Isabelle/HOL
- Formal framework
 - ★ Labeled transition systems as models for components
 - ★ Simulation as model for refinement
 - ★ B method

B method

a method for specifying, designing and coding software components 0

Assigning programs to meanings

Assigning programs to meanings

- Specify
 - Mathematical language: FOL, set theory, integer arithmetics, substitutions
- Verify
 - ★ Weakest-precondition calculus
- Assign programs
 - ★ Refinement calculus
 - Imperative programming

Tool support

- IDE
 - ★ Atelier-B (free, partly open-source)
 - ★ B-Toolkit (free, open-source)
- animation: BRAMA, ProB
- model checking (ProB)
- code generation (b2llvm)
- etc.

METROS AND TRAINS EQUIPPED WITH B SIL4 SOFTWARE

Overview

B by example

Distributed termination detection

Processors: 0, 1, 2 e 3

0 send messages to 1, 2 e 3

1, 2 e 3 compute

3 sends data to 1

computation proceeds

2 terminates, becomes idle

1 becomes idle, 0 sends data to 2

upon receiving a message, 2 becomes active again

3 becomes idle

2 sends a message to 0

0 becomes idle

2 becomes idle

How can 0 can detect that 1 2 and 3 are idle to report end of computation?

Solution EWD 840

- Edsger W. Dijkstra, W.H.J. Feijen, A.J.M. van Gasteren
- Derivation of a termination detection algorithm for distributed computations

MACHINE EWD840

CONSTANTS NUM

PROPERTIES NUM \in NAT1

DEFINITIONS PROC == 0 .. (NUM-1)

• NUM processors [#0, #1, #2, ... #(NUM-1)]

- State of processors
 - active
 - idle

VARIABLES idle INVARIANT idle \subseteq PROC INITIALISATION idle : $\in \mathscr{P}(PROC)$

Detect termination

VARIABLES terminated INVARIANT terminated ∈ BOOL INITIALISATION terminated := FALSE

INVARIANT terminated = TRUE \Rightarrow idle = PROC

• Functional requirement

★ termination occurs when all processors are idle

Approach

- A token circulates among processors
- When processor terminates, forward token to successor
 VARIABLES token
 - VARIABLES token
 INVARIANT token ∈ PROC
 INITIALISATION token := 0

- Hypothesis:
 - ★ Instantaneous communication
 - $\star \#0 \to \#(N-1) \dots \#2 \to \#1 \to \#0$

Approach

INVARIANT token+1..num ⊆ idle

but... what if a message reaches P after token has left?

- Desired property
 - ★ All processors above token position are idle.

Solutions

• but... what if a message reac, sender does not have the token?

SETS

 Token already COLOR = { BLACK, WHITE } VARIABLE

token_color

* The sender **INVARIANT**

token_color \in COLOR \land

(token+1..num ⊆ idle ∨ token_color = BLACK)

but... what if the

- It must be initialisation color_token := WHITE
- "tag" the token to indicate that one more run is required

Solutions

- but... what if the sender does not have the VARIABLES token?
- The sender is in 0..token

tainted INVARIANT

tainted \subseteq PROC \land

(token+1..num ⊆ idle ∨

tainted \cap 0..token $\neq \emptyset \lor$

- When a processor sends a token_color = BLACK) her processor with higher inde INITIALISATION tainted := Ø
- When a flag is set on the processor with the token, it tags the token.

Partial synthesis

```
MACHINE EWD840
CONSTANTS NUM
PROPERTIES NUM \in NAT1
SETS
 COLOR = \{ BLACK, WHITE \}
DEFINITIONS PROC == 0 \dots (NUM-1)
VARIABLES
 idle, terminated, token, tainted, token_color
INVARIANT
 idle \subseteq PROC \land terminated \in BOOL \land token \in PROC \land
 tainted \subseteq PROC \land token_color \in COLOR \land
 (token+1..num ⊆ idle ∨
  tainted \cap 0..token \neq \emptyset \vee
  token_color = BLACK)
INITIALISATION
 idle : \in \mathscr{P}(PROC) \parallel \text{terminated} := FALSE \parallel \text{token} := 0 \parallel
color_token := WHITE || tainted := Ø
```
• An active processor might become idle anytime

Finish(pr) =
PRE pr ∈ PROC ∧ pr ∉ idle THEN
idle := idle ∪ {pr}
END;

- When a processor becomes idle and it has the token, the token goes to the next processor.
 - Processor 0 has a special behaviour (resets the token, etc.)

```
Pass_Token = PRE token ≠ 0 ∧ token ∈ idle THEN
token := token - 1 ||
IF token ∈ tainted THEN
color_token := BLACK
END ||
tainted := tainted - { token }
END
```

- Processor 0:
 - ★ resets the token
 - forwards the token to the processor with higher index

```
Initiate_Probe = PRE token = 0 ^ color_token = BLACK THEN
tainted := tainted - {0} ||
color_token := WHITE ||
token := NUM - 1
END
```

Terminated = **PRE** token = $0 \land \text{color}_{\text{token}} = \text{WHITE} \land 0 \notin \text{tainted} \land 0 \in \text{idle}$ **THEN** terminated := TRUE **END**

- ★ token has returned to 0
- ★ token is not tagged
- ★ 0 is not flagged
- ★ 0 is idle

B-method: synthesis

- Specification:
 - non-deterministic state-machines
 - ★ state = valuation of state variables
 - ★ transition = operation execution
- Design:
 - refinement relation

Overview

- Ingredients
 - ★ B method
 - ★ Isabelle/HOL
- Formal framework
 - ★ Labeled transition systems as models for components
 - ★ Simulation as model for refinement
 - ★ B method

Formalisation

- Interactive theorem prover
 - ★ ACL2, Coq, Isabelle, LCF, Maude, PVS, etc.
 - programming language: define inductive data types, recursive functions
 - ★ logic: specify properties of interest
 - ★ proof engine: verify properties
 - ★ code generation: execute defined functions

Isabelle/HOL

- functional programming language
- typed, higher order logic
- proof:
 - ★ interactive
 - automatic: tableaux, rewriting systems, decision procedures
- code generation: SML, OCaml, Scala

Tool support

Formalisation

• LTS

- Simulation
- B method
 - ★ without pre-condition
 - ★ with pre-condition

Formalisation principles

- A B component is a labeled transition system
 - \star valuation of the variables \iff state
 - ★ initial states, reachable states
- Transitions occur when an operation is applied
 - \star operation \iff event
 - \star state + event \leftrightarrow partial
 - ★ state + event → states ⇔ non deterministic

La record type *Final Supe* name type name

record ('st,	'ev) Tr =	
src :: 'st	"source state"	
dst :: 'st	"destination state"	
lbl :: 'ev	"labeling event"	

field name
field type
field name
record ('st, 'ev) LTS =
init :: "'st set" -- "set of initial states"
trans :: "('st, 'ev) Tr set" -- "set of transitions"

Labeled transition systems

the value

inductive (set) definition

parameter tes

introduction rule

inductive_set states :: "('s', 'ev) LTS ⇒ 'st set"
for l :: "('st, 'ev) LTS"
where
base[elim!]: "s ∈ init l ⇒ s ∈ states l"
l step[elim!]:
 "[t ∈ trans l; src t ∈ states l]
 ⇒ dst t ∈ states l"

introduction rule ces of case-split rules for inductive proofs:

inductive_cases base : "s \in states l" inductive_cases step : "dst t \in states l"

Internal behaviour

inductive_cases multi_step_run : "ts @ [t] ∈ runs l"

Properties of internal behaviour

lemma "ts \in runs l \implies ts \neq [] \implies src (hd ts) \in init l" by (induct rule: runs.induct, auto)

External behaviour

type_synonym 'ev Trace = "'ev list"

definition traces :: "('st, 'ev) LTS ⇒ 'ev Trace set"
where
 "traces l = (map lbl) ` (runs l)

maps function **IbI** to each element of list and returns list of results **map IbI** : converts run to trace operator ` is relational image

Formalisation

• LTS

- Simulation
- B method
 - ★ without pre-condition
 - ★ with pre-condition

Simulation between transitions

Simulation between LTSes

Properties of simulation

- The identity relation on LTS is a simulation.
- The relational composition of two simulations is a simulation.
- The simulated relation is reflexive and transitive.

Simulation and behavior

```
definition sim_run ::
    "'st rel ⇒ ('st, 'ev) Run rel"
where
    "sim_run r ≡
    {(ts, ts') | ts ts'.
        list_all2 (λt t'. (t,t') ∈ sim_transition r) ts ts'}"
```

Simulation and runs

- To two similar runs correspond the same trace (sequence of events).
- Similar runs have equal length.
- other properties have been shown

Simulation on LTSes and behaviour

theorem sim_run: assumes "(l,l') ∈ simulation r" and "ts ∈ runs l" obtains ts' where "ts' ∈ runs l'" "(ts,ts') ∈ sim_run r"

lemma sim_traces: assumes "(l,l') ∈ simulation r" and "t ∈ traces l" shows "t ∈ traces l'"

theorem sim_trace_inclusion:
 "(1,1') ∈ simulation r ⇒ traces l ⊆ traces l'"

corollary simulates_traces:
"l ≤ l' ⇒ traces l ⊆ traces l'"

Formalisation

• LTS

- Simulation
- Bmethod
 - ★ without pre-condition
 - ★ with pre-condition

B machine

record ('st, 'ev) B_machine =
 lts :: "('st, 'ev) LTS"
 invariant :: "'st ⇒ bool"

definition sound_B_machine ::
 "('st, 'ev) B_machine ⇒ bool"

where

"sound_B_machine $m \equiv \forall s \in \text{states}$ (lts m). invariant m s"

Correctness of B machines

theorem machine_po: assumes "∧s. s ∈ init (lts m) ⇒ invariant m s" and "∧t. [t ∈ trans (lts m); invariant m (src t)] ⇒ invariant m (dst t)" shows "sound_B_machine m" unfolding sound_B_machine_def using assms by (auto elim: states.induct)

B refinement

record ('st, 'ev) B_refinement =
 abstract :: "('st, 'ev) LTS" -- "the abstract component"
 concrete :: "('st, 'ev) LTS" -- "the concrete component "
 invariant :: "'st × 'st ⇒ bool" -- "gluing invariant"

definition sound_B_refinement ::
 "('st, 'ev) B_refinement ⇒ bool"

where

```
"sound_B_refinement r ≡
(concrete r, abstract r) ∈ simulation (Collect (invariant r))"
```

Properties of B refinement

lemma refinement_sim:
 "[sound_B_refinement r] ⇒ concrete r ≤ abstract r"

lemma refinement_compose_soundness:

lemma refinement_compose_associative:
 "refinement_compose (refinement_compose r r') r'' =
 refinement_compose r (refinement_compose r' r'')"

etc.

B development

type_synonym ('st, 'ev) B_design =
 "('st, 'ev) B_refinement list"

record ('st, 'ev) B_development =
 spec :: "('st, 'ev) B_machine"
 design :: "('st, 'ev) B_design"

B development

definition sound_B_design where
 "sound_B_design refs ≡ ∀i < size refs.
 sound_B_refinement (refs!i)
 ∧ (Suc i < size refs →
 concrete (refs!i) = abstract (refs!(Suc i)))"</pre>

definition sound_B_development where
 "sound_B_development dev ≡
 sound_B_machine (spec dev) ∧
 sound_B_design (design dev) ∧
 (design dev ≠ [] →
 (lts (spec dev)) = (abstract (hd (design dev)))"

B development
Formalisation

• LTS

- Simulation
- Bmethod
 - ★ without pre-condition
 - ★ with pre-condition

Preconditions

- In B, operations may have a precondition.
- precondition \iff operation terminates in a safe state.
- \neg precondition \iff no guarantee, even of termination.
 - \star transition \iff valid application of operation
 - ★ notion of accepted events, outgoing transitions
- Operations in refinement may have weaker preconditions than in abstract counterpart.
 - ★ new notions of simulation and refinement

Accepted events

Simulation and preconditions

definition simulation_B :: "'st rel ⇒ ('st, 'ev) LTS rel"

definition simulated_B (infixl "≤B" 50)
where "l ≤B l' ≡ ∃r. (l,l') ∈ simulation_B r"

Properties of simulation

lemma simulation_B_composition: assumes "(l, l') ∈ simulation_B r" and "(l', l'') ∈ simulation_B r'" shows "(l, l'') ∈ simulation_B (r 0 r')"

> lemma simulates_B_transitive: assumes "l ≤B l'" and "l' ≤B l''" shows "l ≤B l''"

Accepted events after a run

definition run_accepted_events ::
 "('st, 'ev) LTS ⇒ ('st, 'ev) Run ⇒ 'ev set"
where
"run_accepted_events l r ≡
 if r = [] then UNION (init l) (accepted_events l)
 else accepted_events l (dst (last r))"

definition run_trace ::
 "('st, 'ev) LTS ⇒ ('st, 'ev) Run ⇒ 'ev TrB"
where
 "run_trace l r ≡ (map lbl r, run_accepted_events l r)"

definition traces_B ::
 "('st, 'ev) LTS ⇒ 'ev TrB set"
where

"traces_B l = (run_trace l) ` (runs l)"

Simulation and traces for B

```
lemma sim_traces_B:
assumes "l ≼B l'"
and "(tr, acc) ∈ traces_B l"
shows "∃ (tr', acc') ∈ traces_B l' .
acc ⊇ acc' ∧
(tr = tr' ∨
prefix tr' tr ∧ (∃ d ∈ acc'. d ∉ acc ∧
prefix eq (tr' @ [d]) tr))"
```

B development

- Only change: substituted \leq by \leq **B**
- All results apply

Conclusion

- Semantic model for the behavioural aspects of component in the B method.
- Formalised in Isabelle/HOL.
- Two versions

Outlook

- Investigate other modelling approaches
 - ★ include attribute "alphabet" of events in LTS
- Formalise derivation of semantic structure from syntactic structure
- Formalise refactoring and refinement rules

Thanks for your attention!

Questions?