
A formal framework for the
design of software

components with the B method
David Déharbe - UFRN, Natal, Brazil

j.w.w. Stephan Merz - LORIA & U. Lorraine, Nancy, France

http://DavidDeharbe.github.io

http://DavidDeharbe.github.io

Aspiration

• Software engineering

• Design for quality

• Traceability

• Improve productivity 
 

components for safety-critical
systems

MDD

Automate some design tasks

Approach
• Components for safety-critical systems

Formal methods

• MDD

Formal specification

Successive refinements

• Improve productivity

Refactoring rules

Refinement rules 

Goal
• Formal methods + MDD :

the B method

• Improve productivity:

refinement rules, refactoring rules

• Machine-controlled formalisation of the semantics

• Formal model of component behaviour

Other applications

• Verify

code generators

abstraction techniques

Overview
• Ingredients

B method

Isabelle/HOL

• Formal framework

Labeled transition systems as models for components

Simulation as model for refinement

B method

Overview
• Ingredients

B method

Isabelle/HOL

• Formal framework

Labeled transition systems as models for components

Simulation as model for refinement

B method

B method
a method for specifying,
designing and coding
software components

Assigning programs to
meanings

• Specify

Mathematical language: FOL, set theory, integer arithmetics,
substitutions

• Verify

Weakest-precondition calculus

• Assign programs

Refinement calculus

Imperative programming

Tool support
• IDE

Atelier-B (free, partly open-source)

B-Toolkit (free, open-source)

• animation: BRAMA, ProB

• model checking (ProB)

• code generation (b2llvm)

• etc.

Applications

• Railway

• Aeronautic

• Subway

Refinement 1

O
ve

rv
ie

w
Requirements

MachineMachine

Refinement 1

Refinement n

specify

analyse

design

analyse

(design ; analyse)*

Implementation

code generation

Software component

B
 m

et
ho

d

B by example

• Distributed termination detection

0

1

2

3

Processors: 0, 1, 2 e 3

0

1

2

3

0 send messages to 1, 2 e 3

0

1

2

3

1, 2 e 3 compute

0

1

2

3

3 sends data to 1

0

1

2

3

computation proceeds

0

1

2

3

2 terminates, becomes idle

0

1

2

3

1 becomes idle, 0 sends data to 2

0

1

2

3

upon receiving a message, 2 becomes active again

0

1

2

3

3 becomes idle

0

1

2

3

2 sends a message to 0

0

1

2

3

0 becomes idle

0

1

2

3

2 becomes idle

0

1

2

3

How can 0 can detect that 1 2 and 3 are idle to report end of
computation?

Solution EWD 840

• Edsger W. Dijkstra, W.H.J. Feijen, A.J.M. van
Gasteren

• Derivation of a termination detection algorithm
for distributed computations

B model

• NUM processors [#0, #1, #2, … #(NUM-1)]

MACHINE EWD840

CONSTANTS NUM

PROPERTIES NUM ∈ NAT1

DEFINITIONS PROC == 0 .. (NUM-1)

B model

• State of processors

• active

• idle

VARIABLES idle
INVARIANT
 idle ⊆ PROC
INITIALISATION
 idle :∈ 𝒫(PROC)

B model

• Detect termination

VARIABLES terminated
INVARIANT
 terminated ∈ BOOL
INITIALISATION
 terminated := FALSE

B model

• Functional requirement

termination occurs when all processors are
idle

INVARIANT
 terminated = TRUE ⇒ idle = PROC

Approach
• A token circulates among processors

• When processor terminates, forward token to
successor

• Hypothesis:

Instantaneous communication

#0 → #(N-1) … #2 →#1 →#0

VARIABLES token
INVARIANT token ∈ PROC
INITIALISATION token := 0

Approach

• Desired property

All processors above token position are idle.

INVARIANT token+1..num ⊆ idle
but… what if a

message reaches P after
token has left?

Solutions
• but… what if a message reaches P after token has

left?

• Token already went through P,

The sender must be active 😎

It must be in 0..token

“tag” the token to indicate that one more run is
required

SETS
 COLOR = { BLACK, WHITE }
VARIABLE
 token_color
INVARIANT
 token_color ∈ COLOR ⋀
 (token+1..num ⊆ idle ⋁ token_color = BLACK)
INITIALISATION
 color_token := WHITE

but… what if the
sender does not have the

token?

Solutions
• but… what if the sender does not have the

token?

• The sender is in 0..token

When a processor sends a message to another
processor with higher index, it sets a flag.

When a flag is set on the processor with the
token, it tags the token.

VARIABLES
 tainted
INVARIANT
 tainted ⊆ PROC ⋀
 (token+1..num ⊆ idle ⋁
 tainted ∩ 0..token ≠ ∅ ⋁ 
 token_color = BLACK)
INITIALISATION
 tainted := ∅

Partial synthesis
MACHINE EWD840
CONSTANTS NUM
PROPERTIES NUM ∈ NAT1
SETS
 COLOR = { BLACK, WHITE }
DEFINITIONS PROC == 0 .. (NUM-1)
VARIABLES
 idle, terminated, token, tainted, token_color
INVARIANT
 idle ⊆ PROC ⋀ terminated ∈ BOOL ⋀ token ∈ PROC ⋀  
 tainted ⊆ PROC ⋀ token_color ∈ COLOR ⋀
 (token+1..num ⊆ idle ⋁
 tainted ∩ 0..token ≠ ∅ ⋁ 
 token_color = BLACK)
INITIALISATION
 idle :∈ 𝒫(PROC) || terminated := FALSE || token := 0 ||
color_token := WHITE || tainted := ∅

Behaviour

• An active processor might become idle anytime

Finish(pr) =  
PRE pr ∈ PROC ∧ pr ∉ idle THEN
 idle := idle ∪ {pr}
END;

Behaviour

• An active processor PRi may send a message to
any processor Prj

Send_Message(pri,prj) =
PRE pri ∈ PROC ∧ prj ∈ PROC ∧ pri ∉ idle THEN
 IF prj ∈ idle THEN  
 idle := idle - {prj}
 END ||
 IF prj > pri THEN
 tainted := tainted ∪ {pri}
 END
END

Behaviour
• When a processor becomes idle and it has the

token, the token goes to the next processor.

Processor 0 has a special behaviour (resets
the token, etc.)

Pass_Token = PRE token ≠ 0 ∧ token ∈ idle THEN  
 token := token - 1 ||
 IF token ∈ tainted THEN
 color_token := BLACK
 END || 
 tainted := tainted - { token }
END

Behaviour
• Processor 0:

resets the token

forwards the token to the processor with
higher index

Initiate_Probe = PRE token = 0 ∧ color_token = BLACK THEN
 tainted := tainted - {0} ||
 color_token := WHITE ||
 token := NUM - 1
END

Behaviour

• Termination occurs when

token has returned to 0

token is not tagged

0 is not flagged

0 is idle

Terminated = PRE token = 0 ∧ color_token = WHITE ∧ 0 ∉ tainted ∧ 0 ∈ idle
THEN
terminated := TRUE
END

Next steps
• Syntax and type checking

• Proof that machine is sound

• expressions are well-defined

• all reachable states satisfy the invariant

• Animate behaviour (small instances)

• Model check: no deadlock (small instances)

Next steps
• Design implementation

• Processor 0 is different from the others

• Two different components need to be specified

Leader

Processor

• Each component may be designed individually

B-method: synthesis
• Specification:

non-deterministic state-machines

state = valuation of state variables

transition = operation execution

• Design:

• refinement relation

Form
alisation

Overview
• Ingredients

B method

Isabelle/HOL

• Formal framework

Labeled transition systems as models for components

Simulation as model for refinement

B method

Formalisation
• Interactive theorem prover

ACL2, Coq, Isabelle, LCF, Maude, PVS, etc.

programming language: define inductive data
types, recursive functions

logic: specify properties of interest

proof engine: verify properties

code generation: execute defined functions

Isabelle/HOL
• functional programming language

• typed, higher order logic

• proof:

interactive

automatic: tableaux, rewriting systems, decision
procedures

• code generation: SML, OCaml, Scala

Tool support

Formalisation

• LTS

• Simulation

• B method

without pre-condition

with pre-condition

Formalisation principles
• A B component is a labeled transition system

valuation of the variables ⟺ state

initial states, reachable states

• Transitions occur when an operation is applied

operation ⟺ event

state + event ⥇ ⟺ partial

state + event → states ⟺ non deterministic

record ('st, 'ev) LTS =
 init :: "'st set" -- "set of initial states"
 trans :: "('st, 'ev) Tr set" -- "set of transitions"

Labeled transition systems
record ('st, 'ev) Tr =
 src :: 'st -- "source state"
 dst :: 'st -- "destination state"
 lbl :: 'ev -- "labeling event"

record type
type parameters

type name

field name field type

definition successors ::
 "('st, 'ev) LTS ⇒ 'st set ⇒ 'st set"
where
 "successors l S ≡
 { dst t | t . t ∈ trans l ∧ src t ∈ S }"

Labeled transition systems
defines a named value

the value

the type
the name

inductive_cases base : "s ∈ states l"
inductive_cases step : "dst t ∈ states l"

States
inductive_set states :: "('st, 'ev) LTS ⇒ 'st set"
 for l :: "('st, 'ev) LTS"  
where
 base[elim!]: "s ∈ init l ⟹ s ∈ states l"
| step[elim!]:
 "⟦ t ∈ trans l; src t ∈ states l ⟧
 ⟹ dst t ∈ states l"

Generate instances of case-split rules for inductive proofs:

inductive (set)
definition parameter

introduction rule

introduction rule

lemma reachable_init: "init l ⊆ states l"
by auto

Properties of states

lemma reachable_stable:
 "successors l (states l) ⊆ states l"
unfolding successors_def
by auto

lemma reachable_induct_set:
 assumes s: "s ∈ states l"  
 and "init l ⊆ SET"
 and "successors l SET ⊆ SET"
 shows "s ∈ SET"
using assms
by (induct s) (auto simp: successors_def)

we want to
establish a property name expression

proof construction

lemma reachable_induct_predicate = states.induct

to prove a proposition P is true in all states
of LTS l:
1. prove P is true in init l
2. prove P is preserved by trans l

inductive_cases empty_run : "[] ∈ runs l"
inductive_cases one_step_run : "[t] ∈ runs l"
inductive_cases multi_step_run : "ts @ [t] ∈ runs l"

Internal behaviour

inductive_set runs :: "('st, 'ev) LTS ⇒ ('st, 'ev) Run set"
 for l :: "('st, 'ev) LTS"
where
 base: "[] ∈ runs l"
| start: "⟦ t ∈ trans l; src t ∈ init l ⟧ ⟹ [t] ∈ runs l"
| step: "⟦ t ∈ trans l; ts ∈ runs l; ts ≠ []; src t = dst (last ts) ⟧
 ⟹ ts @ [t] ∈ runs l"

type_synonym ('st, 'ev) Run = "('st, 'ev) Tr list"

Properties of internal
behaviour

lemma "ts ∈ runs l ⟹ ts ≠ [] ⟹ src (hd ts) ∈ init l"
 by (induct rule: runs.induct, auto)

External behaviour

definition traces :: "('st, 'ev) LTS ⇒ 'ev Trace set"
where
 "traces l ≡ (map lbl) ` (runs l)

type_synonym 'ev Trace = "'ev list"

maps function lbl to each element
of list and returns list of results
map lbl : converts run to trace

operator ` is relational image

Formalisation

• LTS

• Simulation

• B method

without pre-condition

with pre-condition

Simulation between
transitions

src dst
lbl

src’

r

dst'
lbl

r

definition sim_transition :: "'st rel ⇒ ('st, 'ev) Tr rel"
where
 "sim_transition r ≡
 { (t,t') | t t’. (src t, src t') ∈ r
 ∧ lbl t = lbl t' ∧ (dst t, dst t') ∈ r }"

Simulation between LTSes
definition simulation :: "'st rel ⇒ ('st, 'ev) LTS rel"
where
 "simulation r ≡ { (l,l') | l l'.
 (∀s ∈ init l. ∃s' ∈ init l'. (s, s') ∈ r)
 ∧ (∀s s'. (s, s') ∈ r ⟶
 (∀t ∈ trans l. src t = s ⟶
 (∃t' ∈ trans l'. src t' = s' ∧
 (t,t') ∈ sim_transition r))) }"

definition simulated (infixl "≼" 50)
where "(l ≼ l') ≡ ∃r. (l,l') ∈ simulation r"

Left-associative, infix operator ≼, with precedence
50, is syntactic sugar for simulated

Properties of simulation

• The identity relation on LTS is a simulation.

• The relational composition of two simulations is a
simulation.

• The simulated relation is reflexive and transitive.

Simulation and behavior
definition sim_run ::
 "'st rel ⇒ ('st, 'ev) Run rel”
where
 "sim_run r ≡
 {(ts, ts') | ts ts'.  
 list_all2 (λt t'. (t,t') ∈ sim_transition r) ts ts'}"

Simulation and runs

• To two similar runs correspond the same trace
(sequence of events).

• Similar runs have equal length.

• other properties have been shown

Simulation on LTSes and
behaviour

theorem sim_run:
 assumes "(l,l') ∈ simulation r" and "ts ∈ runs l"
 obtains ts' where
 "ts' ∈ runs l'" "(ts,ts') ∈ sim_run r"

lemma sim_traces:
 assumes "(l,l') ∈ simulation r" and "t ∈ traces l"
 shows "t ∈ traces l’"

theorem sim_trace_inclusion:
 "(l,l') ∈ simulation r ⟹ traces l ⊆ traces l'"

corollary simulates_traces:  
"l ≼ l' ⟹ traces l ⊆ traces l'"

Formalisation

• LTS

• Simulation

• Bmethod

without pre-condition

with pre-condition

B machine
record ('st, 'ev) B_machine =
 lts :: "('st, 'ev) LTS"
 invariant :: "'st ⇒ bool"

definition sound_B_machine ::
 "('st, 'ev) B_machine ⇒ bool"
where
 "sound_B_machine m ≡ ∀s ∈ states (lts m). invariant m s"

Correctness of B machines

theorem machine_po:
 assumes "⋀s. s ∈ init (lts m) ⟹ invariant m s"
 and "⋀t. ⟦t ∈ trans (lts m); invariant m (src t)⟧
 ⟹ invariant m (dst t)"
 shows "sound_B_machine m"
unfolding sound_B_machine_def
using assms
by (auto elim: states.induct)

B refinement
record ('st, 'ev) B_refinement =
 abstract :: "('st, 'ev) LTS" -- "the abstract component"
 concrete :: "('st, 'ev) LTS" -- "the concrete component "
 invariant :: "'st × 'st ⇒ bool" -- "gluing invariant"

definition sound_B_refinement ::
 "('st, 'ev) B_refinement ⇒ bool”
where
 "sound_B_refinement r ≡
 (concrete r, abstract r) ∈ simulation (Collect (invariant r))"

Properties of B refinement
lemma refinement_sim:
 "⟦ sound_B_refinement r ⟧ ⟹ concrete r ≼ abstract r"

lemma refinement_compose_soundness:
 "⟦ sound_B_refinement r ;
 sound_B_refinement r';
 concrete r = abstract r'⟧

 ⟹ sound_B_refinement (refinement_compose r r')"

lemma refinement_compose_associative:
 "refinement_compose (refinement_compose r r') r'' =
 refinement_compose r (refinement_compose r' r'')"

etc.

B development

type_synonym ('st, 'ev) B_design =
 "('st, 'ev) B_refinement list"

record ('st, 'ev) B_development =
 spec :: "('st, 'ev) B_machine"
 design :: "('st, 'ev) B_design"

B development
definition sound_B_design where
 "sound_B_design refs ≡ ∀i < size refs.
 sound_B_refinement (refs!i)
 ∧ (Suc i < size refs ⟶
 concrete (refs!i) = abstract (refs!(Suc i)))"

definition sound_B_development where
 "sound_B_development dev ≡
 sound_B_machine (spec dev) ∧
 sound_B_design (design dev) ∧
 (design dev ≠ [] ⟶
 (lts (spec dev)) = (abstract (hd (design dev))))"

B development

lemma design_sim:
 ⟦ "sound_B_design refs” ; "refs ≠ []" ⟧

 ⟹ "concrete (last refs) ≼ abstract (hd refs)"

theorem development_sim:
 ⟦ "sound_B_development d" ; "design d ≠ []" ⟧

 ⟹ "concrete (last (design d)) ≼ lts (spec d)"

Formalisation

• LTS

• Simulation

• Bmethod

without pre-condition

with pre-condition

Preconditions
• In B, operations may have a precondition.

• precondition ⟺ operation terminates in a safe state.

• ¬ precondition ⟺ no guarantee, even of termination.

transition ⟺ valid application of operation

notion of accepted events, outgoing transitions

• Operations in refinement may have weaker preconditions than in
abstract counterpart.

new notions of simulation and refinement

Accepted events
definition
 outgoing_trans :: "('st, 'ev) LTS ⇒ 'st ⇒ ('st, 'ev) Tr set"
where
 "outgoing_trans l s ≡ { t | t . t ∈ trans l ∧ src t = s}"

definition
 accepted_events :: "('st, 'ev) LTS ⇒ 'st ⇒ 'ev set"
where
 "accepted_events l s ≡ lbl ` (outgoing_trans l s)"

Given
• a LTS l and
• a state s,

outgoing_trans l s : set of transitions leaving s

Given
• a LTS l and
• a state s,

accepted_events l s : set of events for transitions leaving s

Simulation and
preconditions

definition simulation_B :: "'st rel ⇒ ('st, 'ev) LTS rel"
where
 "simulation_B r ≡ { (l,l') | l l'.
 (∀s ∈ init l. ∃s' ∈ init l'. (s, s') ∈ r)
 ∧ (∀s s'. (s, s') ∈ r ⟶
 accepted_events l s ⊇ accepted_events l' s' ∧
 (∀t ∈ outgoing_trans l s.
 lbl t ∈ accepted_events l' s' ⟶
 (∃t' ∈ outgoing_trans l' s'.
 src t' = s' ∧ lbl t' = lbl t ∧
 (dst t, dst t') ∈ r))) }"

definition simulated_B (infixl "≼B" 50)
 where "l ≼B l' ≡ ∃r. (l,l') ∈ simulation_B r"

• lifting the notion of simulation between states to simulation
between LTS…

• restricted to events accepted by simulating LTS.

Properties of simulation

lemma simulation_B_composition:
 assumes "(l, l') ∈ simulation_B r”
 and "(l', l'') ∈ simulation_B r'"
 shows "(l, l'') ∈ simulation_B (r O r')"

lemma simulates_B_transitive:
 assumes "l ≼B l'" and "l' ≼B l''"
 shows "l ≼B l''"

Accepted events after a run

definition run_accepted_events ::
 "('st, 'ev) LTS ⇒ ('st, 'ev) Run ⇒ 'ev set"
where
"run_accepted_events l r ≡
 if r = [] then UNION (init l) (accepted_events l)
 else accepted_events l (dst (last r))"

B Traces
type_synonym 'ev TrB = "'ev list * 'ev set"

trace of observed
events accepted events

definition run_trace ::
 "('st, 'ev) LTS ⇒ ('st, 'ev) Run ⇒ 'ev TrB"
where
 "run_trace l r ≡ (map lbl r, run_accepted_events l r)"

definition traces_B ::
 "('st, 'ev) LTS ⇒ 'ev TrB set"
where
 "traces_B l ≡ (run_trace l) ` (runs l)"

Simulation and traces for B
lemma sim_traces_B:
 assumes "l ≼B l'"
 and "(tr, acc) ∈ traces_B l"
 shows "∃ (tr', acc') ∈ traces_B l' .
 acc ⊇ acc' ∧
 (tr = tr' ∨
 prefix tr' tr ∧ (∃ d ∈ acc'. d ∉ acc ∧
 prefixeq (tr' @ [d]) tr))"

B development

• Only change: substituted ≼ by ≼B

• All results apply

Conclusion

• Semantic model for the behavioural aspects of
component in the B method.

• Formalised in Isabelle/HOL.

• Two versions

Outlook

• Investigate other modelling approaches

include attribute “alphabet” of events in LTS

• Formalise derivation of semantic structure from
syntactic structure

• Formalise refactoring and refinement rules

Thanks for your attention!

Questions?

