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Aspiration

• Software engineering 

• Design for quality  

• Traceability 

• Improve productivity 
 

components for safety-critical 
systems

MDD

Automate some design tasks



Approach
• Components for safety-critical systems 

Formal methods 

• MDD 

Formal specification 

Successive refinements 

• Improve productivity 

Refactoring rules 

Refinement rules 



Goal
• Formal methods + MDD :  

the B method 

• Improve productivity:   

refinement rules, refactoring rules 

• Machine-controlled formalisation of the semantics 

• Formal model of component behaviour 



Other applications

• Verify 

code generators 

abstraction techniques
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B method
a method for specifying, 
designing and coding 
software components



Assigning programs to 
meanings

• Specify 

Mathematical language: FOL, set theory, integer arithmetics, 
substitutions  

• Verify 

Weakest-precondition calculus 

• Assign programs 

Refinement calculus 

Imperative programming



Tool support
• IDE 

Atelier-B (free, partly open-source) 

B-Toolkit (free, open-source) 

• animation: BRAMA, ProB 

• model checking (ProB) 

• code generation (b2llvm) 

• etc.



Applications

• Railway 

• Aeronautic 

• Subway
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B by example

• Distributed termination detection
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How can 0 can detect that 1 2 and 3 are idle to report end of 
computation?



Solution EWD 840

• Edsger W. Dijkstra, W.H.J. Feijen, A.J.M. van 
Gasteren 

• Derivation of a termination detection algorithm 
for distributed computations



B model

• NUM processors [ #0, #1, #2, … #(NUM-1) ]

MACHINE EWD840 

CONSTANTS NUM 

PROPERTIES NUM ∈ NAT1 

DEFINITIONS PROC ==  0 .. (NUM-1)



B model

• State of processors 

• active 

• idle

VARIABLES idle 
INVARIANT   
 idle ⊆ PROC 
INITIALISATION
  idle :∈ 𝒫(PROC)



B model

• Detect termination

VARIABLES terminated 
INVARIANT   
  terminated ∈ BOOL 
INITIALISATION
  terminated := FALSE



B model

• Functional requirement 

termination occurs when all processors are 
idle

INVARIANT   
  terminated = TRUE ⇒ idle = PROC



Approach
• A token circulates among processors 

• When processor terminates, forward token to 
successor 

• Hypothesis: 

Instantaneous communication 

#0 → #(N-1) … #2 →#1 →#0

VARIABLES token 
INVARIANT token ∈ PROC 
INITIALISATION token := 0



Approach

• Desired property 

All processors above token position are idle.

INVARIANT token+1..num ⊆ idle
but… what if a 

message reaches P after 
token has left?



Solutions
• but… what if a message reaches P after token has 

left? 

• Token already went through P, 

The sender must be active 😎 

It must be in 0..token 

“tag” the token to indicate that one more run is 
required

SETS
  COLOR = { BLACK, WHITE } 
VARIABLE   
  token_color 
INVARIANT
  token_color ∈ COLOR ⋀ 
  (token+1..num ⊆ idle ⋁ token_color = BLACK) 
INITIALISATION
  color_token := WHITE

but… what if the 
sender does not have the 

token?



Solutions
• but… what if the sender does not have the 

token? 

• The sender is in 0..token 

When a processor sends a message to another 
processor with higher index, it sets a flag. 

When a flag is set on the processor with the 
token, it tags the token.

VARIABLES   
  tainted 
INVARIANT
  tainted ⊆ PROC ⋀ 
  (token+1..num ⊆ idle ⋁  
   tainted ∩ 0..token ≠ ∅ ⋁ 
   token_color = BLACK) 
INITIALISATION
  tainted := ∅



Partial synthesis
MACHINE EWD840 
CONSTANTS NUM 
PROPERTIES NUM ∈ NAT1 
SETS
  COLOR = { BLACK, WHITE } 
DEFINITIONS PROC ==  0 .. (NUM-1) 
VARIABLES   
  idle, terminated, token, tainted, token_color 
INVARIANT
  idle ⊆ PROC ⋀ terminated ∈ BOOL ⋀ token ∈ PROC ⋀  
  tainted ⊆ PROC ⋀ token_color ∈ COLOR ⋀ 
 (token+1..num ⊆ idle ⋁  
   tainted ∩ 0..token ≠ ∅ ⋁ 
   token_color = BLACK) 
INITIALISATION
  idle :∈ 𝒫(PROC) || terminated := FALSE || token := 0 || 
color_token := WHITE  || tainted := ∅



Behaviour

• An active processor might become idle anytime

Finish(pr) =  
PRE pr ∈ PROC ∧ pr ∉ idle THEN 
  idle := idle ∪ {pr} 
END;



Behaviour

• An active processor PRi may send a message to 
any processor Prj

Send_Message(pri,prj) = 
PRE pri ∈ PROC ∧ prj ∈ PROC ∧ pri ∉ idle THEN 
  IF prj ∈ idle THEN  
    idle := idle - {prj} 
  END || 
  IF prj > pri THEN 
    tainted := tainted ∪ {pri}  
  END 
END



Behaviour
• When a processor becomes idle and it has the 

token, the token goes to the next processor. 

Processor 0 has a special behaviour (resets 
the token, etc.)

Pass_Token = PRE token ≠ 0 ∧ token ∈ idle THEN  
  token := token - 1 || 
  IF token ∈ tainted THEN  
    color_token := BLACK 
  END || 
  tainted := tainted - { token } 
END



Behaviour
• Processor 0: 

resets the token 

forwards the token to the processor with 
higher index

Initiate_Probe = PRE token = 0 ∧ color_token = BLACK THEN 
  tainted := tainted - {0} || 
  color_token := WHITE || 
  token := NUM - 1 
END



Behaviour

• Termination occurs when 

token has returned to 0 

token is not tagged 

0 is not flagged 

0 is idle

Terminated = PRE token = 0 ∧ color_token = WHITE ∧ 0 ∉ tainted ∧ 0 ∈ idle 
THEN
terminated := TRUE 
END



Next steps
• Syntax and type checking 

• Proof that machine is sound 

• expressions are well-defined 

• all reachable states satisfy the invariant 

• Animate behaviour (small instances) 

• Model check: no deadlock (small instances)



Next steps
• Design implementation 

• Processor 0 is different from the others 

• Two different components  need to be specified 

Leader 

Processor 

• Each component may be designed individually



B-method: synthesis
• Specification: 

non-deterministic state-machines 

state = valuation of state variables 

transition = operation execution 

• Design: 

• refinement relation

Form
alisation
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Formalisation
• Interactive theorem prover 

ACL2, Coq, Isabelle, LCF, Maude, PVS, etc. 

programming language: define inductive data 
types, recursive functions 

logic: specify properties of interest 

proof engine: verify properties 

code generation: execute defined functions



Isabelle/HOL
• functional programming language 

• typed, higher order logic 

• proof: 

interactive 

automatic: tableaux, rewriting systems, decision 
procedures 

• code generation: SML, OCaml, Scala



Tool support



Formalisation

• LTS 

• Simulation 

• B method 

without pre-condition 

with pre-condition



Formalisation principles
• A B component is a labeled transition system 

valuation of the variables ⟺ state 

initial states, reachable states 

• Transitions occur when an operation is applied 

operation ⟺ event 

state + event ⥇  ⟺ partial 

state + event → states  ⟺ non deterministic



record ('st, 'ev) LTS =
  init :: "'st set"       -- "set of initial states"
  trans :: "('st, 'ev) Tr set" -- "set of transitions"

Labeled transition systems
record ('st, 'ev) Tr =
  src :: 'st     -- "source state"
  dst :: 'st     -- "destination state"
  lbl :: 'ev     -- "labeling event"

record type
type parameters

type name

field name field type



definition successors :: 
  "('st, 'ev) LTS ⇒ 'st set ⇒ 'st set" 
where
  "successors l S ≡ 
     { dst t | t . t ∈ trans l ∧ src t ∈ S }"

Labeled transition systems
defines a named value

the value

the type
the name



inductive_cases base : "s ∈ states l"
inductive_cases step : "dst t ∈ states l"

States
inductive_set states :: "('st, 'ev) LTS ⇒ 'st set" 
  for l :: "('st, 'ev) LTS"  
where
  base[elim!]: "s ∈ init l ⟹ s ∈ states l"
| step[elim!]: 
   "⟦ t ∈ trans l; src t ∈ states l ⟧ 
    ⟹ dst t ∈ states l"

Generate instances of case-split rules for inductive proofs:

inductive (set) 
definition parameter

introduction rule

introduction rule



lemma reachable_init: "init l ⊆ states l"
by auto

Properties of states

lemma reachable_stable:
    "successors l (states l) ⊆ states l"
unfolding successors_def
by auto

lemma reachable_induct_set:
  assumes s: "s ∈ states l"  
      and "init l ⊆ SET"
      and "successors l SET ⊆ SET"
   shows "s ∈ SET"
using assms 
by (induct s) (auto simp: successors_def)

we want to 
establish a property name expression

proof construction

lemma reachable_induct_predicate = states.induct

to prove a proposition P is true in all states 
of LTS l: 
1. prove P is true in init l
2. prove P is preserved by trans l



inductive_cases empty_run : "[] ∈ runs l"
inductive_cases one_step_run : "[t] ∈ runs l"
inductive_cases multi_step_run : "ts @ [t] ∈ runs l"

Internal behaviour

inductive_set runs :: "('st, 'ev) LTS ⇒ ('st, 'ev) Run set"  
  for l :: "('st, 'ev) LTS" 
where
  base: "[] ∈ runs l"
| start: "⟦ t ∈ trans l; src t ∈ init l ⟧ ⟹ [t] ∈ runs l"
| step: "⟦ t ∈ trans l; ts ∈ runs l; ts ≠ []; src t = dst (last ts) ⟧ 
         ⟹ ts @ [t] ∈ runs l"

type_synonym ('st, 'ev) Run = "('st, 'ev) Tr list"



Properties of internal 
behaviour

lemma "ts ∈ runs l ⟹ ts ≠ [] ⟹ src (hd ts) ∈ init l"
  by (induct rule: runs.induct, auto)



External behaviour

definition traces :: "('st, 'ev) LTS ⇒ 'ev Trace set" 
where
  "traces l ≡ (map lbl) ` (runs l)

type_synonym 'ev Trace = "'ev list"

maps function lbl to each element 
of list and returns list of results 
map lbl : converts run to trace   

operator ` is relational image



Formalisation

• LTS 

• Simulation 

• B method 

without pre-condition 

with pre-condition



Simulation between 
transitions

src dst
lbl

src’

r

dst'
lbl

r

definition sim_transition :: "'st rel ⇒ ('st, 'ev) Tr rel"
where
  "sim_transition r ≡ 
     { (t,t') | t t’. (src t, src t') ∈ r
       ∧ lbl t = lbl t' ∧ (dst t, dst t') ∈ r }"



Simulation between LTSes
definition simulation :: "'st rel ⇒ ('st, 'ev) LTS rel" 
where
  "simulation r ≡ { (l,l') | l l'.
     (∀s ∈ init l. ∃s' ∈ init l'. (s, s') ∈ r)
   ∧ (∀s s'. (s, s') ∈ r ⟶
        (∀t ∈ trans l. src t = s ⟶
          (∃t' ∈ trans l'. src t' = s' ∧
                           (t,t') ∈ sim_transition r))) }"

definition simulated (infixl "≼" 50)
where "(l ≼ l') ≡ ∃r. (l,l') ∈ simulation r"

Left-associative, infix operator ≼, with precedence 
50, is syntactic sugar for simulated 



Properties of simulation

• The identity relation on LTS is a simulation. 

• The relational composition of two simulations is a 
simulation. 

• The simulated relation is reflexive and transitive.



Simulation and behavior
definition sim_run :: 
  "'st rel ⇒ ('st, 'ev) Run rel”
where
  "sim_run r ≡ 
    {(ts, ts') | ts ts'.  
     list_all2 (λt t'. (t,t') ∈ sim_transition r) ts ts'}"



Simulation and runs

• To two similar runs correspond the same trace 
(sequence of events). 

• Similar runs have equal length. 

• other properties have been shown



Simulation on LTSes and 
behaviour

theorem sim_run:
  assumes "(l,l') ∈ simulation r" and "ts ∈ runs l"
  obtains ts' where 
    "ts' ∈ runs l'" "(ts,ts') ∈ sim_run r"

lemma sim_traces:
  assumes "(l,l') ∈ simulation r" and "t ∈ traces l"
  shows "t ∈ traces l’"

theorem sim_trace_inclusion: 
  "(l,l') ∈ simulation r ⟹ traces l ⊆ traces l'"

corollary simulates_traces:  
"l ≼ l' ⟹ traces l ⊆ traces l'"



Formalisation

• LTS 

• Simulation 

• Bmethod 

without pre-condition 

with pre-condition



B machine
record ('st, 'ev) B_machine =
  lts :: "('st, 'ev) LTS"
  invariant :: "'st ⇒ bool"

definition sound_B_machine :: 
  "('st, 'ev) B_machine ⇒ bool" 
where
  "sound_B_machine m ≡ ∀s ∈ states (lts m). invariant m s"



Correctness of B machines

theorem machine_po:
  assumes "⋀s. s ∈ init (lts m) ⟹ invariant m s"
      and "⋀t. ⟦t ∈ trans (lts m); invariant m (src t)⟧ 
               ⟹ invariant m (dst t)"
    shows "sound_B_machine m"
unfolding sound_B_machine_def
using assms 
by (auto elim: states.induct)



B refinement
record ('st, 'ev) B_refinement =
  abstract :: "('st, 'ev) LTS"     -- "the abstract component"
  concrete :: "('st, 'ev) LTS"     -- "the concrete component "
  invariant :: "'st × 'st ⇒ bool" -- "gluing invariant"

definition sound_B_refinement ::
  "('st, 'ev) B_refinement ⇒ bool”
where
  "sound_B_refinement r ≡ 
  (concrete r, abstract r) ∈ simulation (Collect (invariant r))"



Properties of B refinement
lemma refinement_sim: 
  "⟦ sound_B_refinement r ⟧ ⟹ concrete r ≼ abstract r"

lemma refinement_compose_soundness:
  "⟦ sound_B_refinement r ; 
     sound_B_refinement r'; 
     concrete r = abstract r'⟧

   ⟹ sound_B_refinement (refinement_compose r r')"

lemma refinement_compose_associative:
  "refinement_compose (refinement_compose r r') r'' =
   refinement_compose r (refinement_compose r' r'')"

etc.



B development

type_synonym ('st, 'ev) B_design = 
  "('st, 'ev) B_refinement list"

record ('st, 'ev) B_development =
  spec :: "('st, 'ev) B_machine"
  design :: "('st, 'ev) B_design"



B development
definition sound_B_design where
  "sound_B_design refs ≡ ∀i < size refs.
     sound_B_refinement (refs!i)
   ∧ (Suc i < size refs ⟶ 
      concrete (refs!i) = abstract (refs!(Suc i)))"

definition sound_B_development where
  "sound_B_development dev ≡ 
    sound_B_machine (spec dev) ∧
    sound_B_design (design dev) ∧
    (design dev ≠ [] ⟶ 
     (lts (spec dev)) = (abstract (hd (design dev))))"



B development

lemma design_sim:
  ⟦ "sound_B_design refs” ; "refs ≠ []" ⟧

    ⟹ "concrete (last refs) ≼ abstract (hd refs)"

theorem development_sim:
  ⟦ "sound_B_development d" ; "design d ≠ []" ⟧

  ⟹ "concrete (last (design d)) ≼ lts (spec d)"



Formalisation

• LTS 

• Simulation 

• Bmethod 

without pre-condition 

with pre-condition



Preconditions
• In B, operations may have a precondition. 

• precondition ⟺ operation terminates in a safe state. 

• ¬ precondition ⟺ no guarantee, even of termination. 

transition ⟺ valid application of operation  

notion of accepted events, outgoing transitions 

• Operations in refinement may have weaker preconditions than in 
abstract counterpart. 

new notions of simulation and refinement



Accepted events
definition
  outgoing_trans :: "('st, 'ev) LTS ⇒ 'st ⇒ ('st, 'ev) Tr set"
where
  "outgoing_trans l s ≡ { t | t . t ∈ trans l ∧ src t = s}"

definition
  accepted_events :: "('st, 'ev) LTS ⇒ 'st ⇒ 'ev set"
where
  "accepted_events l s ≡ lbl ` (outgoing_trans l s)"

Given  
• a LTS l and  
• a state s, 

outgoing_trans l s : set of transitions leaving s

Given  
• a LTS l and  
• a state s, 

accepted_events l s : set of events for transitions leaving s



Simulation and 
preconditions

definition simulation_B :: "'st rel ⇒ ('st, 'ev) LTS rel" 
where
  "simulation_B r ≡ { (l,l') | l l'.
     (∀s ∈ init l. ∃s' ∈ init l'. (s, s') ∈ r)
   ∧ (∀s s'. (s, s') ∈ r ⟶
         accepted_events l s ⊇ accepted_events l' s' ∧
         (∀t ∈ outgoing_trans l s.
             lbl t ∈ accepted_events l' s' ⟶ 
             (∃t' ∈ outgoing_trans l' s'. 
                  src t' = s' ∧ lbl t' = lbl t ∧
                  (dst t, dst t') ∈ r))) }"

definition simulated_B (infixl "≼B" 50)
  where "l ≼B l' ≡ ∃r. (l,l') ∈ simulation_B r"

• lifting the notion of simulation between states to simulation 
between LTS… 

• restricted to events accepted by simulating LTS.



Properties of simulation

lemma simulation_B_composition:
  assumes "(l, l') ∈ simulation_B r”
      and "(l', l'') ∈ simulation_B r'"
    shows "(l, l'') ∈ simulation_B (r O r')"

lemma simulates_B_transitive:
  assumes "l ≼B l'" and "l' ≼B l''"
  shows   "l ≼B l''"



Accepted events after a run

definition run_accepted_events :: 
  "('st, 'ev) LTS ⇒ ('st, 'ev) Run ⇒ 'ev set" 
where 
"run_accepted_events l r ≡ 
   if r = [] then UNION (init l) (accepted_events l)
   else accepted_events l (dst (last r))"



B Traces
type_synonym 'ev TrB = "'ev list * 'ev set"

trace of observed 
events accepted events

definition run_trace :: 
  "('st, 'ev) LTS ⇒ ('st, 'ev) Run ⇒ 'ev TrB" 
where 
  "run_trace l r ≡ (map lbl r, run_accepted_events l r)"

definition traces_B :: 
  "('st, 'ev) LTS ⇒ 'ev TrB set" 
where
  "traces_B l ≡ (run_trace l) ` (runs l)"



Simulation and traces for B
lemma sim_traces_B:
  assumes "l ≼B l'" 
      and "(tr, acc) ∈ traces_B l"
    shows "∃ (tr', acc') ∈ traces_B l' .
           acc ⊇ acc' ∧
           (tr = tr' ∨ 
            prefix tr' tr ∧ (∃ d ∈ acc'. d ∉ acc ∧
                             prefixeq (tr' @ [d]) tr))"



B development

• Only change: substituted ≼ by ≼B

• All results apply



Conclusion

• Semantic model for the behavioural aspects of 
component in the B method. 

• Formalised in Isabelle/HOL. 

• Two versions



Outlook

• Investigate other modelling approaches 

include attribute “alphabet” of events in LTS 

• Formalise derivation of semantic structure from 
syntactic structure 

• Formalise refactoring and refinement rules



Thanks for your attention!

Questions?


